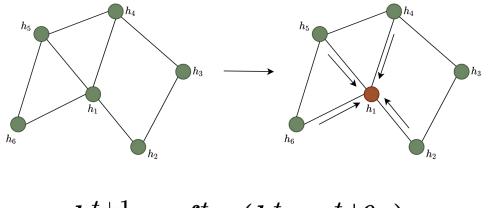


ICLR 2022

PF-GNN: Differentiable Particle Filtering based Approximation of Universal Graph Representations

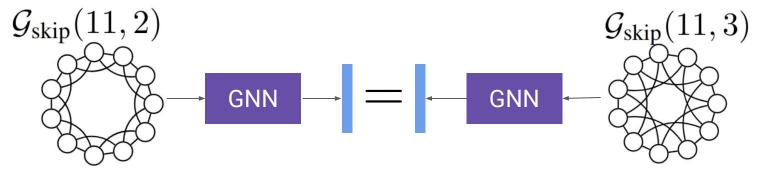
Mohammed Haroon Dupty¹, Yanfei Dong^{1,2}, Wee Sun Lee¹


¹National University of Singapore, ²Paypal Innovation Lab

Graph Neural Networks

Message Passing

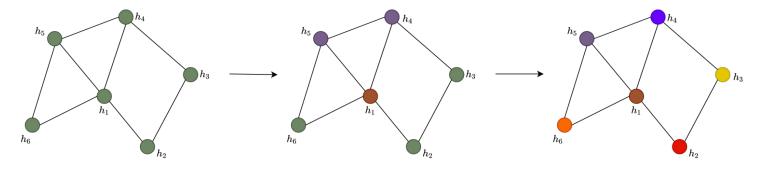
 $m_v^{t+1} = AGGR_{u \in N(v)}ig(f^t_{msg}(h_v,h_u,e_{uv}| heta_m)ig)$



 $h_v^{t+1} = f_{upd}^t(h_v^t, m_v^t | heta_u)$

Representation Capacity of GNNs

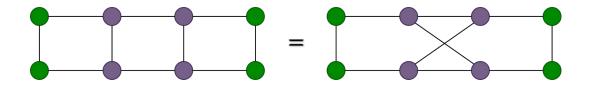
GNNs learn functions on graphs


GNNs cannot distinguish many non-isomorphic graphs

1-WL Color Refinement

GNN = 1-dim 1-WL Color Refinement

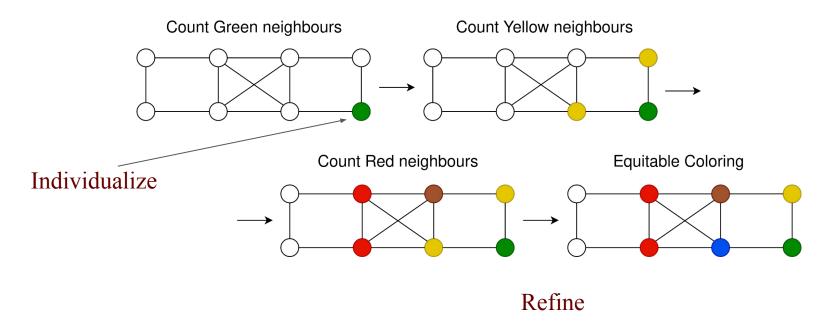
 $\pi^{t+1}(v) = \mathrm{HASH}\Big(\pi^t(v), \ {\!\!\!\{} \pi^t(u), u \in N(v)
\!\!\}\!\!\}\Big)$



1-WL Color Refinement

GNN = 1-dim 1-WL Color Refinement

 $\pi^{t+1}(v) = \mathrm{HASH}\Big(\pi^t(v), \ {\!\!\!\left\{\!\!\left\{\pi^t(u), u \in N(v)
ight\}\!
ight\}\!
ight)}$

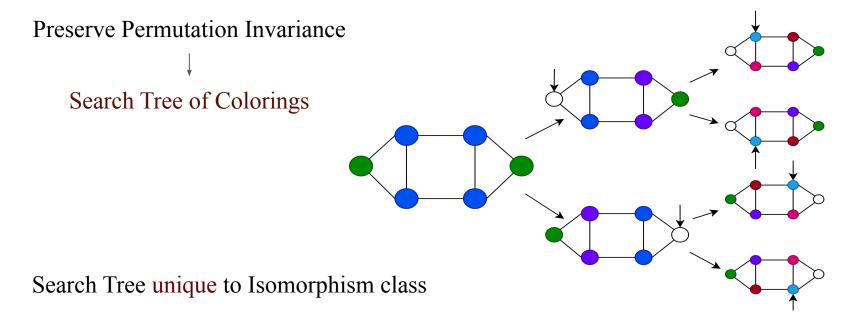


Equitable partition can not be further refined

Many graphs map to same coloring

Individualization and Refinement

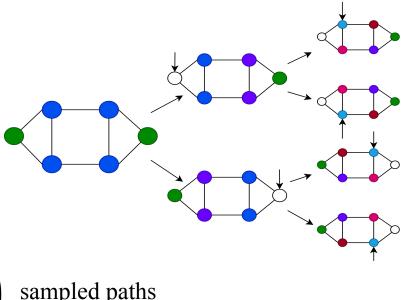
Individualization and Refinement



GNN/1-WL cannot distinguish two graphs

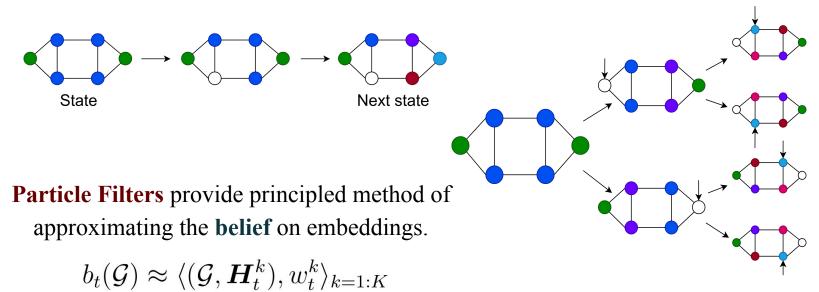
Graphs are **distinguishable** after one step of **IR**

Search Tree of Colorings

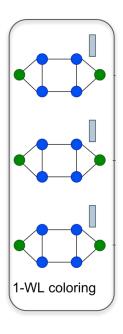

Universal representation on graphs

$$f(\mathcal{G}) = \rho\left(\sum_{\forall \mathcal{I}} \psi(\mathcal{G}, \boldsymbol{\pi}_T^{\mathcal{I}})\right)$$

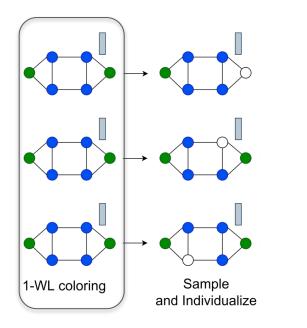
Probabilistic representation


$$\tilde{f}(\mathcal{G}) = \frac{1}{|\Pi^{\mathcal{I}}|} \sum_{\mathcal{I} \in \Pi^{\mathcal{I}}} \psi(\mathcal{G}, \boldsymbol{\pi}_T^{\mathcal{I}}) = \mathbb{E}[\psi(\mathcal{G}, \boldsymbol{\pi}_T^{\mathcal{I}})]$$

 (ϵ, δ) approximation with $K \in O\left(\frac{M^2 \ln(\frac{4D}{\delta})}{\epsilon^2}\right)$ sampled paths



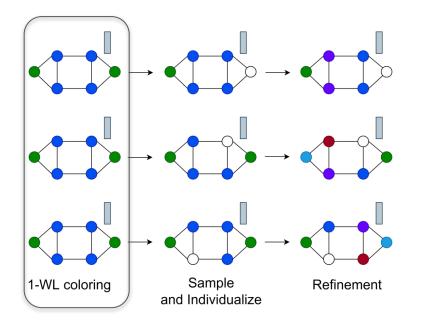
Observation: IR resembles **State Transition**


Initial Belief

Start with K GNN equitable refinements

$$b_1(\mathcal{G}) = \langle (\mathcal{G}, \boldsymbol{H}_1^k), w_1^k \rangle_{k=1:K}$$

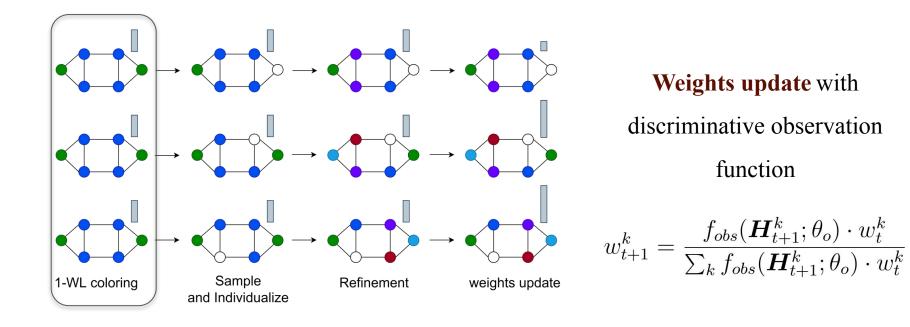
$$\forall k, w_1^k = 1/K$$



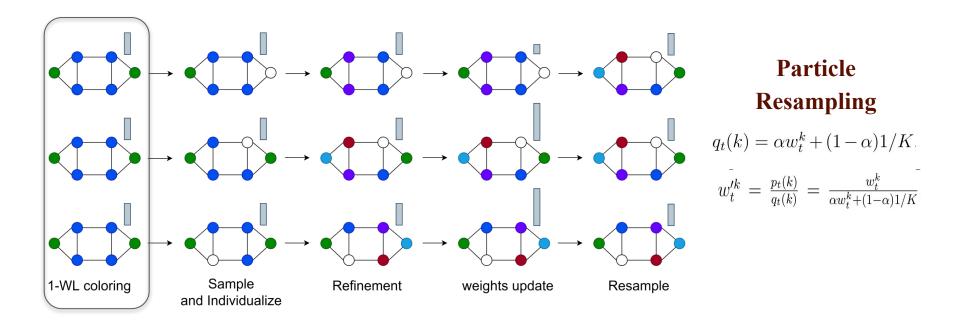
Transition to next state of colorings

• Sample a node and individualize

 $v \sim P(\mathcal{V} | \boldsymbol{H}_t^k; \theta)$ $\boldsymbol{M}_t^k = \mathbf{1} \mathbf{1}^\top; \quad \boldsymbol{M}_{t \ v,:}^k = MLP_{trans}(h_{vt}^k); \quad \boldsymbol{H}_t^k = \boldsymbol{H}_t^k \odot \boldsymbol{M}_t^k;$

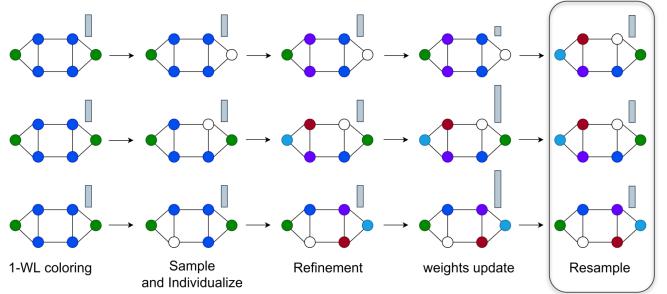

Transition to next state of colorings

- Sample a node and individualize
- Refine the colorings


 $v \sim P(\mathcal{V}|\boldsymbol{H}_t^k; \theta)$

$$\boldsymbol{M}_{t}^{k} = \mathbf{1}\mathbf{1}^{\top}; \ \ \boldsymbol{M}_{t\ v,:}^{k} = MLP_{trans}(h_{vt}^{\ k}); \ \ \boldsymbol{H}_{t}^{k} = \boldsymbol{H}_{t}^{k} \odot \boldsymbol{M}_{t}^{k};$$

 $\boldsymbol{H}_{t+1}^{k} = GNN_{t}(\boldsymbol{H}_{t}^{k})$



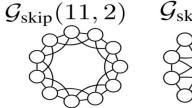
Updated belief

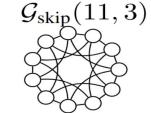
 $b_{t+1}(\mathcal{G}) \approx \langle (\mathcal{G}, \boldsymbol{H}_{t+1}^k), w_{t+1}^k \rangle_{k=1:K}$

Minimize expected loss on sampled paths

$$Loss(\mathcal{G}, y) = \sum_{\mathcal{I}} P(\mathcal{I}|\mathcal{G}, \pi_{t=1:T}^{\mathcal{I}}; \theta) L(\tilde{y}(\pi_{t=1:T}^{\mathcal{I}}), y;; \theta)$$

Train with policy gradient loss


$$\nabla Loss(\mathcal{G}, y) = \sum_{\mathcal{I}} \nabla L(\tilde{y}(\pi_{i=1:T}^{\mathcal{I}}), y; \theta) + \sum_{\mathcal{I}} \left(\nabla \log P(\mathcal{I}|\mathcal{G}, \pi_{i=1:T}^{\mathcal{I}}; \theta) \right) L(\tilde{y}(\pi_{i=1:T}^{\mathcal{I}}), y; \theta)$$



Experiments

Graph Classification on Circulant Skip Link Graphs

	GCN	GAT	GIN^*	RING-GNN	RP-GIN	3-WL GNN	PF-GNN
MEAN	10	10	10	10	37.6	97.8	100.0
MEDIAN	10	10	10	10	43.3		100.0
MAX	10	10	10	10	53.3	100.0	100.0
MIN	10	10	10	10	10	30	100.0
STD	0	0	0	0	12.9	10.9	0

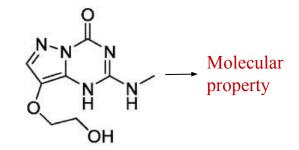
Graph Isomorphism detection

DATASET	MODEL	CHEBNET	PPGN (3-WL)	GNNML3	GCN	GAT	GIN	GNNML1
SR25	BACKBONE +PF-GNN	0.0±0.0	0.0±0.0	0.0±0.0	$\begin{array}{c} 0.0{\pm}0.0\\ \textbf{100.0}{\pm}0.0\end{array}$	$\begin{array}{c} 0.0{\pm}0.0\\ \textbf{100.0}{\pm}0.0\end{array}$	$\begin{array}{c} 0.0{\pm}0.0\\ \textbf{100.0}{\pm}0.0\end{array}$	$\begin{array}{c} 0.0{\pm}0.0\\ \textbf{100.0}{\pm}0.0\end{array}$
EXP	BACKBONE +PF-GNN	$0.0{\pm}0.0{-}$	0.0±0.0	100.0 ±0.0	$\begin{array}{c} 0.0{\pm}0.0\\ \textbf{100.0}{\pm}0.0\end{array}$	$\begin{array}{c} 0.0{\pm}0.0\\ \textbf{100.0}{\pm}0.0\end{array}$	$\begin{array}{c} 0.0{\pm}0.0\\ \textbf{100.0}{\pm}0.0\end{array}$	$\begin{array}{c} 0.0{\pm}0.0\\ \textbf{100.0}{\pm}0.0\end{array}$

Experiments

Graph prediction on Real-world datasets

Predicting molecular properties


Molecular graphs

QM9	
QM9	

MAE	-
0.081 ± 0.003	_
0.034 ± 0.001	
$0.068 \ \pm 0.001$	
$0.088 \ \pm 0.007$	
0.062 ± 0.001	
0.046 ± 0.001	
0.029 ± 0.001	
$0.019 \ \pm 0.001$	
$0.017 \hspace{0.1 in} \pm 0.001$	_
	$\begin{array}{c} 0.081 \pm 0.003 \\ 0.034 \pm 0.001 \\ 0.068 \pm 0.001 \\ 0.088 \pm 0.007 \\ 0.062 \pm 0.001 \\ 0.046 \pm 0.001 \\ 0.029 \pm 0.001 \\ 0.019 \pm 0.001 \end{array}$

00	βB-	m	ol	hiv
\sim			·	

Method	ROC-AUC
GIN	75.58 ± 1.40
GCN	$76.06{\scriptstyle\pm0.97}$
DeeperGCN	$78.58{\pm}1.17$
PNA	$79.05{\scriptstyle\pm1.32}$
DGN	$79.70{\scriptstyle \pm 0.97}$
GSN	$77.99{\scriptstyle\pm1.00}$
Directional GSN	$80.39 {\scriptstyle \pm 0.90}$
Graphormer	$80.51{\pm}0.50$
PF-GNN	$80.15{\scriptstyle\pm0.68}$

Takeaway

We use **Particle filters** to approximate the search-tree of IR based solvers.

With **PF-GNN**, we get

• Principled approximation of

universal representations on graphs

- No exponential runtime
- No preprocessing required

Thank you!